

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Variation in the Luminescence Lifetimes of $\text{EuCl}_3 \cdot n\text{H}_2\text{O}$ ($N=0,1,2,3,6$)

N. A. Stump^a; R. G. Haire^b; J. R. Peterson^{bc}

^a Department of Physical Sciences, Winston-Salem State University, Winston-Salem, NC ^b Department of Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN ^c Department of Chemistry, University of Tennessee, Knoxville, TN

To cite this Article Stump, N. A. , Haire, R. G. and Peterson, J. R.(1999) 'Variation in the Luminescence Lifetimes of $\text{EuCl}_3 \cdot n\text{H}_2\text{O}$ ($N=0,1,2,3,6$)', *Spectroscopy Letters*, 32: 5, 737 — 746

To link to this Article: DOI: 10.1080/00387019909350022

URL: <http://dx.doi.org/10.1080/00387019909350022>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

VARIATION IN THE LUMINESCENCE LIFETIMES OF
 $\text{EuCl}_3 \cdot n\text{H}_2\text{O}$ ($n=0,1,2,3,6$)

Key words: Eu^{3+} Ion Luminescence, Luminescence Lifetime, $\text{EuCl}_3 \cdot n\text{H}_2\text{O}$

N. A. STUMP,^a R. G. HAIRE,^b and J. R. PETERSON^{b,c}

^aDepartment of Physical Sciences, Winston-Salem State University, 601 Martin Luther King Jr. Drive, Winston-Salem, NC 27110; ^bChemical and Analytical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6375; ^cDepartment of Chemistry, University of Tennessee, Knoxville, TN 37996-1600

ABSTRACT

Eu^{3+} ion emission spectra and luminescence lifetimes were investigated for $\text{EuCl}_3 \cdot n\text{H}_2\text{O}$ ($n=0,1,2,3,6$). Each compound exhibited a characteristic set of emission bands and a specific luminescence lifetime. The number of water molecules and chloride ions coordinated to the Eu^{3+} ion in these materials was estimated from the observed lifetimes, spectroscopic implications, and expected lanthanide coordination numbers. Approximation of the observed luminescence decay constant for each material was possible through the use of arithmetic terms associated with both the complexed water molecules and the complexed chloride ions which make up the inner-coordination sphere of the Eu^{3+} ion.

INTRODUCTION

There are five established species of $\text{EuCl}_3 \cdot n\text{H}_2\text{O}$ ($n=0,1,2,3,6$).¹⁻³ The hexahydrate and anhydrous salt can be readily prepared for desired studies. The other forms have been identified previously only as intermediates in the thermal decomposition processes associated with the formation of EuOCl and EuCl_3 from $\text{EuCl}_3 \cdot 6\text{H}_2\text{O}$.¹⁻³ It was recently observed⁴ that the emission spectra from these

intermediate species could be observed *in situ* by heating the hydrated sample within the spectrometer's sample chamber (i.e. spectral monitoring of the thermal decomposition process). Studies performed in this manner also suggested that several individual hydrates could be prepared and isolated.⁴ Following the isolation of these different hydrates, it was then possible to measure and subsequently compare their emission spectra and lifetimes at room temperature.

The Eu³⁺ ion luminescence lifetimes of compounds have been used previously to determine the extent of hydration of the Eu³⁺ ion.⁵ This determination is possible because of the large effect water has on the luminescence lifetimes of lanthanide ions. The water molecules appear to provide de-excitation pathways that shorten greatly the emission lifetime, and increases in the number of coordinated water molecules have been correlated to decreases in the lifetime. The specific number of coordinating water molecules can be identified by comparing the luminescence lifetimes of a hydrated species containing normal and deuterated water.⁵ In this report, the luminescence lifetimes of the hexa-, tri-, di-, and monohydrate of EuCl₃, as well as anhydrous EuCl₃, have been determined and are compared and discussed.

EXPERIMENTAL METHODS

Anhydrous EuCl₃ was obtained commercially (certified 99.9% Cerac, Inc.). The EuCl₃ · 6H₂O was generated as described previously⁴ from the forced precipitation of the solid from an aqueous EuCl₃ stock solution prepared from Eu₂O₃ (certified 99.9%, Johnson Matthey) and hydrochloric acid. The tri-, di-, and monohydrates were formed successively by thermal decomposition of EuCl₃ · 6H₂O.⁴ Each sample was heated under a partial vacuum while its emission following laser excitation was monitored continuously. Upon the initial formation of a new hydrate, the sample was equilibrated at temperature for at least an hour, cooled to room temperature, and sealed in the glass tube for further optical studies. The three intermediate hydrates (tri-, di-, and monohydrate) were formed from samples of the hexahydrate at temperatures of approximately 120, 140, and 160 °C, respectively.⁴

Excitation of the samples was accomplished using the 465.8 nm line of a six-Watt argon ion laser (Coherent Radiation, model number: Innova 300). The emitted light, collected at 90° from the incident laser light, was focused onto the entrance slit

of a double-meter monochromator (Jobin Yvon/Instruments SA, model number: Ramanor HG.2S spectrophotometer). The dispersed light was analyzed with a cooled photomultiplier tube (Hamamatsu, model number: R636). The signal, following amplification and discrimination, was processed by one of two photon-counting systems. The first system is based on the collection of emission spectra and included a multichannel analyzer (Nicolet, model number; 1170) interfaced with a personal computer using "Spectra Calc" software (Galactic Industries, version 2.12). The second system is based on the collection of luminescence lifetime data and centered around a gated, photon-counting system (Stanford Research Systems, model number; SR400) interfaced with a personal computer using "SR465" software (Stanford Research Systems, version 1.01) for both data collection and determination of the luminescence lifetimes.

RESULTS AND DISCUSSION

Spectroscopic Results

The room-temperature emission spectra from the five $\text{EuCl}_3 \cdot n\text{H}_2\text{O}$ materials are shown in Figure 1 and a compilation of the emission lines is given in Table 1. If these spectra (Figure 1) are compared to those obtained previously at the synthesis temperatures,⁴ only slight shifts in appearance and energy, due to the change in temperature are apparent.

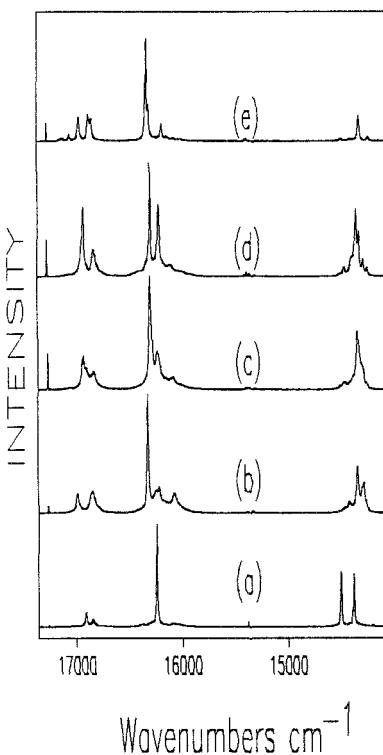


Fig 1. Room Temperature emission spectra from (a) EuCl_3 , (b) $\text{EuCl}_3 \cdot \text{H}_2\text{O}$, (c) $\text{EuCl}_3 \cdot 2\text{H}_2\text{O}$, (d) $\text{EuCl}_3 \cdot 3\text{H}_2\text{O}$, and (e) $\text{EuCl}_3 \cdot 6\text{H}_2\text{O}$.

Table 1

Major Emission Transition Energies (cm⁻¹) for
 $\text{EuCl}_3 \cdot n\text{H}_2\text{O}$ (n=0,1,2,3,6)

	n = 6	n = 3	n = 2	n = 1	n = 0
⁵ D ₀ to	14231	14243	14259	14285	14379
	14315	14280	14295	14341	14393
⁷ F ₄	14397	14323	14337	14419	14501
	14485	14350	14383		
		14389	14465		
		14461			
⁵ D ₀ to	15281	15310	15333	15337	15375
	15373	15355	15369	15388	
	15386	15380			
		15404			
⁵ D ₀ to	16176	16098	16082	16072	16242 ^a
	16300	16213	16226	16214	
	16322 ^a	16292 ^a	16294 ^a	16242	16320 ^a
⁵ D ₀ to	16820	16826	16834	16846	16850
	16843	16925	16904	16984	16910
	16961		16930		
⁵ D ₀ to	17265	17266	17264	17269	----- ^b

Table 2

Luminescence Lifetimes of
 $\text{EuCl}_3 \cdot n\text{H}_2\text{O}$ (n=0,1,2,3,6)

Compound	Luminescence Lifetime	Decay Constant
	τ (μs)	k (ms ⁻¹)
$\text{EuCl}_3 \cdot 6\text{H}_2\text{O}$	123	8.13
$\text{EuCl}_3 \cdot 3\text{H}_2\text{O}$	195	5.13
$\text{EuCl}_3 \cdot 2\text{H}_2\text{O}$	158	6.33
$\text{EuCl}_3 \cdot \text{H}_2\text{O}$	171	5.85
EuCl_3	205	4.88

^aTransitions at which lifetimes were measured.

^bTransition forbidden by Laporte selection rules.

The emission spectrum exhibited by the anhydrous EuCl_3 matches that previously reported for it.⁶ The luminescence lifetimes were measured at energies (16242-16322 cm⁻¹) which correspond to the most intense Eu^{3+} ion transition between the ⁵D₀ excited state and the ⁷F₂ J-state. The luminescence lifetimes of the five compounds, $\text{EuCl}_3 \cdot n\text{H}_2\text{O}$ (n=0,1,2,3,6) are listed in Table 2.

Qualitative Analysis of the Luminescence Lifetimes

It was suggested by Horrocks and Sudnick that as the number of water molecules attached to the Eu^{3+} ion is reduced, the Eu^{3+} ion luminescence lifetime

should increase.⁵ The lifetimes from our experiments appear at first to contradict this contention, as the dihydrate and monohydrate exhibit shorter luminescence lifetimes than that of the trihydrate. However, upon further consideration of two important points, an interpretation for this difference can be offered.

First, the Eu³⁺ ion luminescence lifetimes are dependent on the number of water molecules occupying positions in the inner coordination sphere of the Eu³⁺ ion, not the total number of hydrating waters per formula unit. Water molecules can bridge between metal ions. They can also occupy sites that are not coordinated to the metal ion. If either bridging or uncoordinated waters are present, the number of waters in the inner coordination sphere of the emitting atom can not be approximated by the number of waters of hydration.

Secondly, the luminescence lifetime-hydration number correlation considers only the effect of water on the luminescence lifetime.⁵ Although complexing agents like the Cl⁻ ion do not have as large an effect on the luminescence lifetime as does water, compounds containing coordinated chloride ions also exhibit luminescence lifetimes much shorter than the intrinsic lifetime of Eu³⁺ ion's emission (e.g., Cl⁻ ions can also influence Eu³⁺ luminescence lifetimes).

In the series of compounds studied here, the hexahydrate is known to be eight coordinate (complexed by six water molecules and two chloride ions),⁷ and exhibits a luminescence lifetime of about 123 μ s. This value is consistent with the lifetime previously reported for this compound.⁵ After formation of the trihydrate, the luminescence lifetime rose to 195 μ s, in accord with an increase in the lifetime correlating with the loss of three waters of hydration. With this change, the coordination number of the Eu³⁺ ion has now appeared to drop to five, a relatively low value for a lanthanide ion. It is probable that the third chloride ion now occupies a position in the first coordination sphere, resulting in a coordination number of six for the Eu³⁺ ion.

EuCl₃ · 2H₂O has a luminescence lifetime of about 158 μ s (compared to 195 μ s for the trihydrate), an apparent contradiction to the increased lifetime expected with the loss of hydrated water. However, this decrease in the luminescence lifetime can be explained if the two remaining water molecules form bridges to the nearby Eu³⁺ ions. Thus, instead of the simple loss of a water molecule resulting in an increased lifetime (coordination number of five), we propose that a total of four bridging water

molecules are coordinated to each Eu^{3+} ion along with the three chloride ions; this would be consistent with the shorter luminescence lifetime and provide a coordination number of seven for the Eu^{3+} ion.

The monohydrate's lifetime of about 175 μs (compared to 158 μs for the dihydrate) now exhibits the expected increase in luminescence lifetime, reflecting the loss of half of the bridging water molecules, which decreases the Eu^{3+} ion's coordination number to five. It is believed that chloride ions may bridge to neighboring Eu^{3+} ions at this point, increasing the coordination number to a value more consistent with that normally associated with a lanthanide ion. The similarities between the emission spectra of the hexahydrate and the monohydrate suggest that the inner coordination spheres of the two species may be similar. Due to this similarity, it is proposed that the three chloride ions bridge to adjacent Eu^{3+} ions with the addition of three other bridging chloride ions from neighboring EuCl_3 units. This would then result in a coordination number of eight for the Eu^{3+} ion in the monohydrate, like that of the hexahydrate. The inner coordination sphere of the Eu^{3+} ion in the monohydrate would consist of six chloride ions and two water molecules, as opposed to six water molecules and two chloride ions in the hexahydrate.

This inner coordination sphere for the monohydrate is also supported by the red shift observed in the Eu^{3+} ion emission feature associated with the transition between the $^5\text{D}_0$ and $^7\text{F}_0$ levels (see Table 1). The crystal field imposed upon the emitting Eu^{3+} ion is strongly effected by its coordination. An expansion or contraction of a metal ion's coordination sphere is normally reflected by a shift in energy (expansion, shift to higher energy; contraction, shift to lower energy). In the cases of the hexa-, tri-, and dihydrates of EuCl_3 , the shifts are less than a wavenumber at approximately 17265 cm^{-1} (see Table 1), indicating little expansion or contraction of the coordination sphere. In the case of the monohydrate, the shift is about four wavenumbers toward higher energy. Thus, this observed shift to higher energy supports the suggested expansion of the Eu^{3+} ion's coordination sphere to accommodate a coordination number of eight.

It is well known that the Eu^{3+} ion in anhydrous EuCl_3 is coordinated to nine chloride ions.⁸ Each chloride ion bridges between two adjacent Eu^{3+} ions. The luminescence lifetime of the Eu^{3+} ion in EuCl_3 was about 205 μs , consistent with that reported in the literature.⁹ This lifetime, while longer than that of the monohydrate

(as expected), is only slightly longer than that of the trihydrate. This implies the additional chloride ions attached to the Eu^{3+} ion in the anhydrous compound also influence the Eu^{3+} ion's luminescence lifetime.

Quantitative Aspects of Luminescence Lifetimes

The observed decay constant ($k_{\text{obs.}}$) of the luminescence lifetime can be expressed as the sum of the intrinsic constant of the emitting species ($k_{\text{int.}}$) and the constant associated with nonradiative pathways of de-excitation ($k_{\text{nonrad.}}$). Thus,

$$k_{\text{obs.}} = k_{\text{int.}} + k_{\text{nonrad.}} \quad (1)$$

The $k_{\text{int.}}$ is often very small in comparison to $k_{\text{nonrad.}}$. If this is the case, then Eqn. (1) can be simplified to

$$k_{\text{obs.}} \equiv k_{\text{nonrad.}} \quad (2)$$

If the largest contributor to the non-radiative decay depends on processes involving species within the inner coordination sphere of the Eu^{3+} ion (water molecules and/or chloride ions), then Eqn. (2) can be expanded to Eqn. (3), where "n" is the number of water molecules attached to the Eu^{3+} ion, and "m" is the number of chloride ions attached.

$$k_{\text{obs.}} \equiv m * k_{\text{chloride}} + n * k_{\text{water}} \quad (3)$$

Using the lifetimes observed for the compounds with known coordination (the anhydrous salt and $\text{EuCl}_3 \cdot 6\text{H}_2\text{O}$), the values of k_{water} and k_{chloride} can be determined. In anhydrous EuCl_3 , nine chloride ions are attached to each Eu^{3+} ion.⁸ Using "n" = 0, "m" = 9, and $k_{\text{obs.}} = 4.88 \text{ ms}^{-1}$ (Table 2) for Eqn. (3), k_{chloride} has a value of $0.542 \text{ ms}^{-1}/\text{Cl}^-$. The Eu^{3+} ion in the hexahydrate compound is coordinated by six water molecules and two chloride ions.⁷ Inserting the values of "n" = 6, "m" = 2, $k_{\text{obs.}} = 8.13 \text{ ms}^{-1}$ (Table 2), and $k_{\text{chloride}} = 0.542 \text{ ms}^{-1}/\text{Cl}^-$ in Eqn. (3), a value of $1.17 \text{ ms}^{-1}/\text{H}_2\text{O}$ is calculated for k_{water} .

These k_{water} and k_{chloride} values can now be used to predict the luminescence lifetimes associated with the suggested coordination spheres of the Eu^{3+} ion in the other hydrate compounds. The trihydrate was assigned a coordination number of six; having three waters and three chloride ions. Substituting these values of "n" and "m" into Eqn. (3) provides a k_{obs} of 5.14 ms^{-1} and a corresponding lifetime of $195 \mu\text{s}$, identical to that observed experimentally. The dihydrate was assigned a coordination number of seven; having three chloride ions and four bridging water molecules. Substituting "n" = 4 and "m" = 3 into Eqn. (3) yields a k_{obs} of 6.31 ms^{-1} , which corresponds to a lifetime of $158 \mu\text{s}$. This predicted value is also identical to that observed experimentally from the $\text{EuCl}_3 \cdot 2\text{H}_2\text{O}$ sample. The coordination of the Eu^{3+} ion in the monohydrate compound was believed to consist of six chloride ions and two water molecules. Using Eqn. (3) with these values yields a k_{obs} of 5.59 ms^{-1} and a corresponding luminescence lifetime of $179 \mu\text{s}$. The experimental value of $171 \mu\text{s}$ is in excellent agreement, considering experimental errors and the expansion of the coordination sphere implied by the shift in the spectral features. The consistent agreement between the calculated and measured lifetimes implies that a model based on the inner sphere coordination of the emitting Eu^{3+} ion appears to be valid and would be useful in predicting luminescence lifetimes.

CONCLUSIONS

The results of our investigations suggest that the coordination number of the Eu^{3+} ion in $\text{EuCl}_3 \cdot 3\text{H}_2\text{O}$ is six, which includes three water molecules and three chloride ions. In $\text{EuCl}_3 \cdot 2\text{H}_2\text{O}$, the Eu^{3+} ions have a coordination number of seven; three chloride ions and four bridging water molecules. Similarly, a coordination number of eight is suggested for the Eu^{3+} ion in $\text{EuCl}_3 \cdot \text{H}_2\text{O}$, where there are six bridging chloride ions and two bridging water molecules.

The values measured for the luminescence lifetimes of the five $\text{EuCl}_3 \cdot n\text{H}_2\text{O}$ ($n=0,1,2,3,6$) compounds can be calculated by summing the effects associated with the complexing ligands within the inner coordination sphere of the emitting Eu^{3+} ion. This summation includes terms associated with both complexed water molecules and complexed chloride ions. From our results, it has been determined that for each water molecule that occupies a Eu^{3+} ion's inner sphere coordination site, the k_{obs} is increased by a factor of $1.17 \text{ ms}^{-1}/\text{H}_2\text{O}$. Similarly, a chloride ion occupying an inner

sphere coordination site increases the k_{obs} by a factor of $0.542 \text{ ms}^{-1}/\text{Cl}^-$. Although the effect of a chloride ion on the luminescence lifetime of the Eu^{3+} ion is less than half of that associated with a water molecule, the chloride ion plays an important and predictable role in the observed lifetimes of these five Eu^{3+} compounds. Whether this approach is limited to the $\text{EuCl}_3 \cdot n\text{H}_2\text{O}$ system, or can be extended to other systems, will be the object of future studies.

ACKNOWLEDGMENTS

This research was sponsored by the Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy under contract DE-AC05-96OR22464 with Lockheed Martin Energy Research Corp. The authors also wish to acknowledge the support of the U. S. Department of Energy's Oak Ridge National Laboratory Research Participation Program as administered by the Oak Ridge Institute for Science and Education.

REFERENCES

1. V. K. Il'in, V. A. Krenov, and V. I. Evdokimov, Thermal Decomposition of Samarium, Europium, and Ytterbium Chloride Hexahydrates, *Russ. J. Inorg. Chem.* 1972; **17**: 1497-1498.
2. F. Matthes and G. Haeseler, Über einige Untersuchungen an Hydraten der Chloride von Samarium, Gadolinium, und Europium, *Zeitsch. Chem.* 1963; **3**: 72-73.
3. G. Haeseler and F. Matthes, Über den Thermischen Abbau der Chloridhydrate der Seltenen Erden, *J. Less-Common Metals* 1965; **9**: 133-151.
4. N. A. Stump, G. K. Schweitzer, J. K. Gibson, R. G. Haire, and J. R. Peterson, Luminescence Study of the Thermal Decomposition of Europium Trichloride Hexahydrate, $\text{EuCl}_3 \cdot 6\text{H}_2\text{O}$, *Appl. Spectrosc.* 1994; **48**: 937-944.
5. W. DeW. Horrocks, Jr. and D. R. Sudnick, Lanthanide Ion Probes of Structure in Biology. Laser Induced Luminescence Decay Constants Provide a Direct Measure of the Number of Metal-Coordinated Water Molecules, *J. Amer. Chem. Soc.* 1979; **101**: 334-340.
6. N. A. Stump, G. Chen, J. R. Peterson, and R. G. Haire, Emission Spectrum from Eu^{3+} Ions in Anhydrous EuCl_3 , *Inorg. Chim. Acta* 1992; **196**: 209-211.

7. N. K. Bel'skii and Yu. T. Struchkov, The Crystal Structure and Optical Properties of Europium Chloride Hexahydrate, $\text{EuCl}_3 \cdot 6\text{H}_2\text{O}$, Sov. Phys.-Crystallogr. 1965; **10**: 15-20.
8. B. Moroson, Crystal Structures of Anhydrous Rare-Earth Chlorides, J. Chem. Phys. 1968; **49**: 3007-3012.
9. N. A. Stump, G. Chen, R. G. Haire, and J. R. Peterson, Temperature Dependence of the Eu^{3+} Ion Luminescence Lifetime Exhibited by Anhydrous EuCl_3 , Appl. Spectrosc. 1994; **48**: 1174-1176.

Date Received: June 5, 1999

Date Accepted: July 5, 1999